Fisheries Management Techniques FT 211

Joel Markis University of Alaska Southeast

Fisheries Technology

Chapter 4

Aquatic Habitat Measurements

This Module will Contain

This Module will Contain 8 Main areas

- Aquatic Habitat Overview
- Habitat Mapping
- Geomorphology
- Hydrology
- Substrate
- Water Quality
- Stream Habitat Classification
- Lake and Reservoir Habitats

Student Learning Outcomes

Students will be able to:

- Summarize the importance of aquatic habitats and the types of measurements used to assess them
- Identify common types of habitat mapping and strengths associated with each
- Describe Geomorphology and outline common measurement techniques
- Describe Hydrology and outline common measurement techniques
- Illustrate the importance of substrate in aquatic habitats and summarize associated assessment techniques
- Define different water quality parameters and how they might be assessed
- Summarize the different stream habitat classifications and distinctions between
- Dewscribe lake and reservoir habitats and associated sampling techniques

Why do we Measure Habitat?

- Inventorying
 - Establish a baseline
- Analyzing Habitat Quality
 - Good or bad for fish
 - Identify limiting factors
- Monitoring effects of land use
 - Hydropower, cattle grazing, urbanization
- Assessing improvement activities
 - After logging, stream channelizing, dam outflow
- How would you design a study to conduct such investigations?
- Which habitat variables would you measure to answer questions?
- What measurement techniques would you use?

Habitat Measurements Include

- Physical
 - Shape, size, area
- Chemical
 - Nutrients, contaminants
- Biological
 - Plants & critters

Habitat Quality Influences

- Numbers
 - Good habitat can be highly productive
- Sizes
 - Different habitat is necessary at different life stages
- Species of fish
 - Varying habitat preferences

Habitat Variable selection

- Define objectives
 - Narrow in scope (easy to collect too much data)
- Select relevant habitat characteristics
 - Temp. vegetation, velocity
- Select most appropriate method to measure characteristics
 - Thermometer, satellite imagery, stream gauge
- Use of standard methods
 - Replicable, accepted

Techniques selected

- Repeatable Compare results over time or space
- Accurate Information should be similar to true value
- Precise Lots of variability is bad
- Meet budget \$\$ is always a factor

Define spatial and temporal boundaries

Global – Micro habitat

- Space
 - Watershed 1 or many

Stream Segment

- Stream
- Segment
- Habitat Type
- Time
 - Geologic
 - Years
 - Season
 - Days

Self Check 1

- Select all the reasons we might measure aquatic habitats
 - Inventory and establish a baseline
 - Analyzing Habitat Quality for fish
 - Monitoring effects of a hydropower project
 - Assessing a stream rehabilitation project
 - All of the above
- Aquatic habitat can be broken down into 3 basic catagories
 - Flow, discharge, and vegetation
 - Biological, Chemical, Physical
 - Terrestrial, Aquatic, subterranean
 - Small, Medium, Large

Habitat Mapping

Use of existing maps & photos

- Aerial photos
 - snow, fires, floodplain, vegetation
- Topographic maps
 - aquatic habitats, contour lines
- Maps of geology
 - soils, vegetation, climate
- GIS Calculation of Habitat features

Aerial Photographs

Topographic maps

• Habitats and Contour lines

GIS – Geographic Information System

- GIS a system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data
- Free software
- www.gis.com
- \$\$ in GIS

GIS.com Home What is GIS G	ESRI.com Support Training Events More ESRI Web Sites the Guide to Geographic Information Systems IS Showcase Implementing GIS GIS Education Careers in GIS GIS Blog
What is GIS?	
Main	What is GIS?
Key GIS Concepts Why Use GIS? What Can You Do with GIS? Answering Questions with GIS Related Learning Links	A geographic information system (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information.
GIS References	
• <u>Glossaries</u> • <u>Directories</u> • <u>Periodicals</u> • <u>GIS in Every Walk of Life</u>	GIS allows us to view, understand, question, interpret, and visualize data in many ways that reveal

- LIDAR light detection and ranging lasers
- Can Calculate (effortlessly)
 - Watershed boundaries_
 - Watershed area
 - Catchment basin
 - Stream length
 - Stream order

GIS & Digital Elevation Models

Digital Elevation Models (DEM)

GIS & Habitat

- Can model habitat types to imagery
 - Even aquatic habitat

ADF&G Mapping

Maps & GIS

Maps, interactive map viewers, and GIS data are available for detailed geographic (spatial) information on a variety of lands and waters related topics. ADF&G houses current and legacy data that land, fish and wildlife managers, scientists, and recreationists may find useful. This data includes information on species distribution, subsistence harvest, refuges, and stocked lakes.

GIS (Geographic Information Systems) is a powerful analysis tool that can display many forms of geographically referenced information that helps us to visualize relationships, patterns, and trends. GIS allows a quick and easy way to understand and share information.

Digital devices now in conjunction with mapping applications can be used to help you better understand where you are in the field. You can <u>create a custom hunt map</u> to print, or for use on a mobile device, based on Game Management Unit (GMU), by Species, by Hunt Number, or by Hunt Type.

GIS Data Downloads

Printable Maps

	State of Alaska	myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees
	Alaska Depart Fish a	Ind Game Search © Fish & Game © State of Alaska
0	Home Fishing Hunting	g Subsistence Viewing Education Species Lands & Waters Regulations
	Access & Planning Conservati	ion Areas Ecosystems Habitat Permits Maps & GIS Restoration & Enhancement
it	Lands & Waters	ADF&G Home » Lands and Waters » Maps and GIS
	Lands & Waters Home	Interactive Maps
	Access & Planning	Our interactive map viewing sites allow users to pan to areas of interest anywhere in the state and view the GIS data
	Conservation Areas	in greater detail by zooming in on the web map. The tabular data that are attached to the data layers can also be
	Ecosystems	printed on most sites.
	Habitat Permits	
	Maps & GIS	Alaska Fish and Game Maps
	Interactive Maps	= Alaska Laka Databasa
	 Alaska Lake Database 	Alaska Game Management Boundaries (external site)
	 Crucial Habitat Assessment Tool 	Crucial Habitat Assessment Tool Fish Resource Monitor
	∎ Fish Resource Monitor	 <u>Anadromous Waters Catalog</u> o Fish Passage
	Anadromous	Freshwater Fish Inventory
	Waters Catalog ■ Fish Passage	• Hunting Maps
	Manufac	

NOAA ShoreZone Mapping

- Entire Shoreline of Alaska Flown
- Ground-trothed to get habitat classification correct

Fisheries
Permits, Reports, Licensing
Online Services
Protected Species
Habitat Conservation
Regulations
News
Grants
Administration and Jobs
Alaska Regional Office alaskafisheries.noaa.gov PO Box 21668 Juneau, Alaska 99802-1668 Contact Information —
F 🕒 👑 🕥
Related Websites
Select from below

Accessibility

Alaska ShoreZone Coastal Mapping and Imagery

ALASKA SHOREZONE - INTRODUCTION

The ShoreZone mapping system has been in use since the early 1980s and has been applied to more than 40,000 km of shoreline in Washington and British Columbia (Berry et al 2004; Howes 2001). Through partnerships with other agencies and organizations, portions of southeastern and central Alaska have been imaged and mapped. This project is funded by NOAA and a number of other agencies and organizations as listed below.

This standardized system catalogs both geomorphic and biological resources at mapping scales of better than 1:10,000. The high resolution, attribute rich dataset is

Kruzof Island, Sitka Sound, Alaska. Photo: NOAA Fisheries

a useful tool for extrapolation of site data over broad spatial ranges and creating a variety of habitat models.

Low-tide-oblique aerial imagery sets this system apart from other mapping efforts. You can "fly

Position - Features can be located by

- Latitude and longitude
- Universal transverse mercator (UTM) coordinates
- Township and range coordinates of public lands

GPS is the future

- Accuracy down to cm
- Mapping habitat variables
 - Redd size and location
 - Riffle length and width
 - Location of passage Obs
- Truthing GIS

Self Check

- GIS stands for
 - Geographic information standard
 - Geographic Information System
 - Galactic information satellite
 - Genesis information system
- Which of the following provides location information down to cm level
 - Latitude and longitude (GPS)
 - Universal transverse mercator (UTM) coordinates
 - Township and range coordinates of public lands

Aquatic Habitat Terminology

- Geomorphology The shape of something
 - The scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near the earth's surface.
- Hydrology The study of water
 - Study of the movement, distribution, and quality of water in streams and Rivers (elsewhere too)

Geomorphic features

- Basin (Watershed) size
- Drainage density
- Stream Order
- Stream gradient
- Sinuosity

Watershed area Influences

- Amount of water yielded
- Number and size of streams
- Sediment transport

Watershed area Measured

- Tracing boundaries
- Calculating area
- REALLY IN GIS
 - Even Google Earth

Drainage Density

- Dividing total stream length of watershed by the watersheds area
 - Measure of how well or how poorly a watershed is drained by stream channels.

Stream order - rank of relative size

- 1st order-smallest unbranched on headwater
- 2nd order-two first order streams meet
- 3rd order-two second order streams meet
- Note...order increased only when two of the same order join

Stream Gradient

- Slope rise (or fall) over run
- Number of contour lines crossed / distance
- Meters per km; feet per mi; or percent

Gradient Calculated by

- Topographic maps
- Stadia rod measures
- Inclinometer

UNYM

Sinuosity

• How much the stream meanders

Sinuosity - how curvy?

- Low sinuosity
 - Steep gradients
 - Little pool development
- High sinuosity
 - Undercut banks
 - Large, deep pools

Self Check

- What is identified by the red line outline in the above picture
 - Watershed Area
 - Drainage density
 - Stream Order
 - Stream gradient
 - Sinuosity

- Sinuosity is a measure of how steep the stream or river is
 - True
 - False

Stream Habitat Classification

Group stream & river characteristics into different habitat types

- Pool Slow and Deep
- Glide Slow and Shallow
- Run Fast and Deep
- Riffle Fast and shallow. Water surface tension is not broken, resulting in undulations
- Rapid Water surface tension is broken, creating whitecaps
- Cascade A series of small falls close together
- Waterfall Water falls vertically or near vertically without obstruction

Habitat Classification

Slow Moving Low Gradient

Glide/Run

Rapid/Cascade

Fast Moving Steep Gradient

Self Check

- A Run typically has faster moving water than a Cascade
 - True
 - False
- The above image represents what kind of stream habitat
 - Pool
 - Glide
 - Run
 - Riffle
 - Rapid
 - Cascade

Cover & Protection

Important in creating good habitat

- Boulders
- Woody Debris
- Aquatic vegetation
- Riparian vegetation
 - Water turbulence and depth
 - Riparian features

Cover requirements vary by

- Species Burbot vs salmonids
- Life stage Juveniles need cover, adults resting places
- Season Overwintering habitat juvenile Coho

Stream shading measure

Riparian Vegetation & Shading

- Densiometer
- Solar radiometer
- iPhone ??

Bank Stability Measure

- Related to riparian vegetation
- Visual rating system
- Proportion of study area with actively eroding banks
- Impacts channel evolution
- Drive-in

Large woody debris (LWD)

- Stabilizes channels
- Forms pools
- Traps spawning gravel/organic matter
- Habitat for macro invertebrates
- Provides cover for fish

Large woody debris (LWD)

- Count (tally)
 - Grouped into bin sizes
- Measure
 - Each piece along reach > size X
 - Length & diameter (both ends)

Self Check

- LWD stands for
 - Lake wetted diameter
 - Large wood diameter
 - Large woody debris
 - Least water depth
- Stream shading can be measured using all of the following except
 - Densiometer
 - Solar Radiometer
 - iPhone
 - Inclinometer

Substrate composition

- Quality of spawning habitat
- Fish cover
- Benthic macro invertebrates composition
- Benthic macro invertebrates production

Substrate

- Classification by
 - Visual
 - Wentworth scale
- Subsurface substrate composition
 - Estimate effect on embryo survival

Wentworth Scale

- Standard classification system for particle diameter
 - Gravelometer

Udden	-Wente	rorth Scale	2	Y	-	Ŕ	2	-	
Inch	mm		Boulders	-	-		-		2
10.0-	500	_		-	1	/	-	2	3
	200	large smull	Cobbles	80	((6 h	-	5
1.0	-50 20 10	very coarse coarse medium	Gravel	States States			• · · · ·		
0.1	5	tine very fine		and a second			a land		
0.01	1 0.5	coarse medium	Sand						
	0.05	very fine	-			-	-		
0.001-		modium	Sill	E	-				N.
	0.005	very fine	-				2		
0001	0.001	medium	Clay						

McNeil sampler

- More portable
- Less costly
- Easy operation

Freeze core sampler

- Analyze vertical stratification
- More complete collection of fine sediment
- Sample deeper water

Diagramm of the Freezing-Corer

Erosion & sedimentation

Activities that increase erosion & sedimentation

- Flooding
- Road building
- Logging
- Grazing
- Mining

Erosion and Sedimentation

- Repeated measure of channel cross sections
- Scour chains aggradation and degradation

Self Check

- Substrate composition can be extremely important to fish and aquatic organisms
 - True
 - False
- Which of the below is not a tool to measure sobstrat
 - McNeil Sampler
 - Dirt Sifter
 - Freeze Corer
 - Scour Chains
 - Gravelometer

Stream Measurements - Transect Vs Habitat Sampling

- Transect
 - Systematically measured
 - Visually estimated
- Habitat based
 - Divides area to habitat types
 - Visually estimates habitat features

Geomorphic features influence

- Lake / river productivity
- Composition of stream habitat
- Fish species & abundance

Hydrology - Velocity Flow & Discharge

- How much water & How fast
- Changes over time
- Function of Season Climate
 - Habitat
- Impact habitat quality / quantity
- Fish passage

Velocity Measure - speed

- Distance over time
 - -m/sec
- Floating object
- Movement of dye
- Mechanical current meter
- Electrical current meter

Velocity meters

- Propeller
- Cup

SonTek

- Electromagnetic
- Acoustic

Stream Width

• Thalweg – deepest point in the channel (B)

Stream Flow

- 10 20 points
- Total depth X 0.6 to get average depth
- Avg depth x velocity = discharge

Discharge measured

- Gauging stations
 - Measure stream height convert to discharge
- Hydrographs
 - Graphs of stream discharge
 - Actual & Predicted

ID:PBFA4 Lat: 34.29 Lon: 91.99 Name:PINE BLUFF 5NNE River:ARKANSAS RVR

Discharge in Big Rivers

Grand Teton NP&P

USGS hydrologic technician Bob Reaves collects streamflow measurements from the cableway at the USGS streamgage on the Snake River near Moran, WY. Jackson Lake Dam is shown in the background

Self Check

- How could You measure Stream Velocity without a velocity meter
 - Get the information from GIS
 - Use a GPS
 - Time how long it takes a stick to float 10 meters downstream
 - A velocity meter is the only way to get velocity information
- Select the parameters needed to measure stream discharge
 - Width & Depth
 - Width & Velocity
 - Width, Depth, Velocity
 - Depth & Velocity

Water Quality

- Numerous standards APHA EPA
- Electronic sensors/ meters
 - Yellow Springs Instruments (YSI)
 - ICM Perstorp
 - Hydrolab
 - Orion

Water Quality

- Temperature field
- Dissolved Oxygen field
- pH field
- Nutrients lab
- Chlorophyll lab
- Suspended Solids / turbidity field
- Salinity field

Self Check

- Water Quality can be limiting to fish and aquatic organisms
 - True
 - False
- Technology is making it easier to collect water quality information in the field
 - True
 - False

Lake and Reservoir Morphology

- Area (how big)
- Depth (how deep)
 - Maximum Depth
 - Average Depth
- Volume (how much)
 - Area X Average Depth = Volume
- Shape or Irregularity (circle vs highly irregular)
- Watershed Area
- Most can be measured using
 - GIS
 - Google Earth

Depth measure

requenc

es

View

- Electronic echo sounders
- Weighted sounding cables

SINTER DE TANK DETERSON

Merriam Cone

Physiochemical attributes

- Temperature
- Dissolved oxygen
- Transparency
- Note: All affect water quality

Measurements

- 1-m intervals
- surface to bottom
- 'Water Profile'

Temperature

Metabolic Processes

- Mercury thermometer
- Reversing thermometer
- Bathythermograph
- Electronic thermister
- CTD

Dissolved Oxygen

Changes with Water Temp Measured with Electronic sensors

Impacts Fish distribution

- Varies by Species

 - Whitefish, Catfish
- Life Stage
- Prey Species

Water Transparency

Impacted by

- Suspended particles
- Plankton
- Proxy for Production Measure using Secchi disk
- Turbidity tube

Lake and Reservoir Classifications

- Oligotrophic low nutrient levels
- Eutrophic high nutrient concentrations

Eutrophic

- High Phosphorous (fertilizer)
- High Chlorophyll a
- Low secchi disk depth

Self Check

- A lake with high levels of nutrients, lots of algae, and low Secchi Depth readings would be classifited as
 - Oligotrophic
 - Eutrophic
 - Mesotrophic
 - Heterotrophic
- The amount of dissolved oxygen in water increases as you increase temperature
 - True
 - False

This is just a taste

- There are books and even PhD's on the topics
- Oceanography FT 110
- Aquatic Ecology / Limnology FT 270

Review

- Aquatic Habitat Overview
- Habitat Mapping
- Geomorphology
- Hydrology
- Substrate
- Water Quality
- Stream Habitat Classification
- Lake and Reservoir Habitats