Fisheries Management Techniques FT 211

Joel Markis

Week 3

Data & Statistics

Fisheries Technology

Chapter 2

Data Management and Statistical Techniques

E

This Module will Contain

This Module will Contain ?? Main areas

- What are data and Statistics
- Sampling design
- Data collection in the field
- Computer management / Databases
- Data Visualization
- Overview of statistics
- Descriptive Statistics
- Inferential statistics

Student Learning Outcomes

Students will be able to:

- Broadly summarize what data are how statistics can be used on data
- Overview study and sample Design
- Explain and summarize field data collection techniques
- Outline computer based and database handling of fisheries data
- Summarize types of data visualization
- Demonstrate an understanding of general statistical concepts
- Define descriptive statistical techniques
- Summarize inferential statistical concepts

Fisheries Techniques Field Course

Dates

- Ketchikan April 15 17
- Kodiak April 22 24

Sign Up if You haven't Already!

Data and Statistics in Fisheries

- Manager's responsibility
 - enumerate change
 - assess management actions
 - quantify human influences
- Need statistical tools for these jobs

What do we collect?

Data

What are data?

Values of quantitative or qualitative variables belonging to a set

Special Note: Data is the plural form of datum

- so one says, "The data are..."
- These Data
- not "The data is..."

Statistics

Statistics - is the study of the collection, analysis, interpretation, presentation, and organization of data.

http://www.ted.com/talks/arthur_benjamin_s_formula_for_changing_math _education

- Analyzing and Interpreting data
- Inferences from a sample to the population

Statistician

- Likes figures but lacks the social skills to be an accountant
- https://www.youtube.com/watch?v=IUK6zjtUjoo
- "There are Lies, damned lies, and statistics"
 - British Prime Minister Benjamin Disraeli but Mark Twain

Audience, Scope, and Limitations

- Always see statistician before data collection
- "Will data answer my question?"

Self Check 1

- Generally speaking statistics involves Analyzing and Interpreting data
 - True
 - False
- Who said "There are Lies, damned lies, and statistics"
 - Earnest Hemingway
 - Mark Twain
 - William Faulkner
 - John Steinbeck
 - F. Scott Fitzgerald

Collecting Data and Statistics

Populations and Samples

- Population = all the elements under investigation
- Sample = some of the elements
- Biological populations sometimes change because fish migrate

Sampling Design Considerations

- Size of the sampling area
- Sampling units in each sample
- Location of sampling units in sampling area
- Selection of the sampling unit
- Cost/time

Random sample

- Every member of the population has equal opportunity to be sampled
- With or without replacement
 - Sleepy fish will be easier to catch
- Random number table

	Part of a						
I	able	of Ran	dom N	umbers			
	61424	20419	86546	00517			
	90222	27993	04952	66762			
	50349	71146	97668	86523			
	85676	10005	08216	25906			
	02429	19761	15370	43882			
	90519	61988	40164	15815			
	20631	88967	19660	89624			
	89990	78733	16447	27932			

Stratified random sample

- Divide population into Strata
- Randomly sample within strata

Girls

There are twice as many boys as girls in the population...

Boys

...so you need twice as many boys as girls in a stratified sample.

Cluster sampling

- Determine sampling sites
- Choose a site randomly
- Take all the samples from a single site

Systematic sampling

- Select sampling units at regular intervals
- Examples:
 - sample every fifth 100-m section of a stream
 - measure and weigh every 4th fish from a population

Sample Size

- Larger the better, money and time constraints
- Stepwise determination (5, 10, 15,...) till mean and CI are stable
- Usually n > 30

Self Check 2

- How can one generate a random number
 - Use a random number generator
 - Roil a die
 - Flip a coin
 - All of the above
- Dividing the population into strata and then randomly selecting a sample within strata is an example of
 - Simple random sampling
 - Stratified random sampling
 - Systematic sampling
 - Cluster sampling

Data Handling and Database Management

- Data are expensive to collect so
 - record accurately
 - keep it safe
 - quickly if possible

Field data sheets are standardized by study

- Print on waterproof paper
- Write with pencil, ink will run
- Write legibly, you may not be one reading
- Copy or input data sheets asap
 - Easier to resolve discrepancies when its fresh

When possible, make use of new technology

- Electronic measuring boards
- Digital calipers
- iPad and dataloggers
- Check to be sure data are being recorded

Sensor HORN[®]Water Temp Pro v2 ONSEL®

Self Check 3

- Which is best for recording written information in the field?
 - Pencil
 - Pen
 - Sharpie
- Electronic measuring boards and digital calipers are both examples of ways to reduce writing and data errors in data collection in the field
 - True
 - False

Data Management

- Most Organizations use databases. So...
- Biologists need to understand databases
- Also how to enter and retrieve data
- Database manager

Databases are

- Repositories of information
- Logically organized
- Facilitate retrieval of specific information
- Provide for customized output reports
- Relational

Examples of databases include

- PC
 - Access
 - dBase IV
 - Paradox
 - Double Helix
- Mainframes
 - Oracle

Storage Considerations

- ALWAYS MAKE BACKUPS
 - daily, weekly, monthly
- CD-ROMs may degrade after 30 years
- Technology becomes obsolete (5 1/4" floppies)
- Most organizations have network drives
- RAID Storage
- Cloud

Quality Control

- What quality control exists?
 - There needs to be some!
 - Number in your pants, factory line
- Are data within believable ranges?
 - Sorting is Huge
 - NERRS Stories
 - USFS Forest Inventory
- check printouts by hand
- use two people to proofread

Self Check 3

- The paper number in the pocket of a new pair of pants is an example of what?
 - Pants Database
 - Sizing Information
 - Quality Control
 - None of the above
- Click on the icon that is NOT a type of database soft Microsoft

Cess

E

Data Visualization (i.e. graphs)

Visualization is so important

SORTED

ARRANGED

PRESENTED

Data Visualization (i.e. graphs)

- Depict ALL data
- Picture worth 1000 numbers
 - pie chart
 - bar chart
 - histogram (vertical or horizontal)
 - scatter plot
 - line graph

Histograms and Bar Charts

- Histogram
 - Graphical representation of data
 - For continuous data
 - Length-frequency data
 - Watch out for bin size bias
- Bar Chart
 - For category data
 - Spaces between

Pie Chart

- Also for category data
- Like diet components
- Size of slice equals relative contribution
 130518000 Pink
 66777000 Sockeye
 63471000 Chum
 3373000 Coho

Scatter Plots

- Show relation between X and Y
- X (independent variable) on horizontal axis
- Y (dependent variable) on vertical axis
- Examples:
 - length-weight
 - spawners-recruits
 - effort-yield

Line Graphs

- for ordered data
- time-series with time on X-axis

Alaska Commercial Salmon Harvests and Exvessel Values

2015 Alaska Commercial Salmon Harvests and Exvessel Values							
Species	Avg. Wt. (pounds)	Avg. Price per Pound	Number of Fish (thousands)	Lbs. of Fish (thousands)	Est. Value US\$ (thousands)		
Southeast							
Chinook	10.06	\$3.81	307	3,085	\$11,751		
Sockeye	4.36	\$1.09	1,389	6,054	\$6,598		
Coho	5.88	\$0.78	1,876	11,030	\$8,604		
Pink	3.84	\$0.20	34,089	130,900	\$26,180		
Chum	8.46	\$0.50	8,559	72,407	\$36,204		
Totals			46,218	223,473	\$89,335		
Prince William Sound							
Chinook	16.42	\$5.65	24	388	\$2,189		
Sockeye	5.35	\$2.01	3,210	17,183	\$34,593		
Coho	7.43	\$0.66	198	1,469	\$966		
Pink	3.38	\$0.22	98,254	332,085	\$71,913		
Chum	5.38	\$0.61	2,544	13,679	\$8,331		
Totals			104,229	364,802	\$117,990		

VS

Self Check 4

- What type of data visualization is depicted above
 - Pie chart
 - Bar chart
 - Histogram
 - Scatter plot
 - Line graph

• A _____ is for categorical data

- Bar chart
- Histogram

Data Terminology and Characteristics

- Data set = entire collection of numbers
- Case = row of closely associated variables
 - example: L, W, age of single fish
- Variable = column describing an attribute of each case
 - Example: age of each fish

Fish	Length	Weight	Age
1 2 3 4 5			

Qualitative and Quantitative data

- Qualitative = category data
 - nominal (sex, species) cannot order
 - ordinal (ranked data, house number) can order
- Quantitative = numerical data
 - discrete (integers example: age, count)
 - continuous (not integers example: length, temp, time)
 - Can assume an infinite number of values between any two

**************************************	* 120 100 80 60 40 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 10

Precision, Accuracy, and Bias

- Precision = how tight is pattern on shotgun blast?
 - tighter means more precision
- Accuracy = how close is pattern to center of bull's eye
 - closer means more accuracy
- Bias = consistent inaccuracy

Low Accuracy High Precision High Accuracy Low Precision Low Accuracy Low Precision

- Precise
- Accurate
- Biased

Significant digits

- Can't be more than the level of your measurement!
- Minimum accuracy = range / 30
- Maximum accuracy = range/300

- Fish lengths 21.362 51.482 Range = 30.120
 - Minimum 30/30 = 1
 - So 1cm
 - Maximum 30/300 = 0.1
 - So .1cm

3.14159562

Self Check 5

- Precision represents how close a pattern is to the center of bull's eye, closer means more precise
 - True
 - False

- Falls into 2 categories
- Descriptive Collection, organization, summarization & Presentation of data
- Inferential Generalizing from small to large, estimation, hypothesis testing, variable relationships, making predictions

Statistics

- Analyzing and Interpreting data
- Inferences from a sample to the population
 - If samples are selected accordingly represent population

-n = Sample Size

1. Describe data

2. How spread out the data are

Descriptive Statistics

- We have data, now we want to describe this data
- Summarize lots of measurements with one number (or a few)
- Measures of central tendency
 - mean = arithmetic average
 - median = middle value

$$\overline{x} = \frac{\Sigma x}{n}$$

Descriptive Statistics (cont.)

- Measures of **Dispersion**
 - Range = max min value
 - Variance = sum of squared deviations from sample mean
 - $\circ~$ How much the data varies
- Standard deviation (SD)
 - square root of variance
- Standard error of mean (SE)
 - standard deviation / root of sample size

Variance

Degrees of Freedom

- Number of independent observations in data set
- **n-1** where n = number of observations
- increased degrees of freedom reduces variance

Confidence Intervals

- Sample average rarely equals population mean
- Express estimate as a range of values
- Average plus/minus Student's t (n-1 df) times standard error of mean

Distributions

- Normal bell shaped curve
- Skewed data clumped to right or left
- Bimodal two peaks in the range of data

Normal Distribution

Self Check 6

 In general descriptive statistics fall into two categories, measures of the 'Central tendency' and Measures of dispersion

– True

– False

- The above figure represents what kind of data distribution
 - Normal
 - Sigmodal
 - Skewed
 - Bimodal

Inferential Statistics and Hypothesis Testing

- What can we infer about the data
- Are two variables related?
- Are two groups of fish different?

Inferential Statistics and Hypothesis Testing

- Null hypothesis... no difference in pop means
- Two-sided alternative hypothesis... yes difference in pop means
- One-sided alternative hypothesis... pop1 > pop2 or vise versa

Basic Inferential Tests of Significance

A = B

How do you test for significance?

- t-Test are two means different?
- paired t-Test are means of paired data different?
 - Before after
- ANOVA are any of a group of means different from the others?

• Chi-square test - does observed freq. dist. differ from expected freq. dist.? X-test

A = B = C = D

Levels of significance

- P > 0.05 not significant
- 0.01 < P < 0.05 significant
- 0.001 < P < 0.01 highly significant
- 0.0001 < P < 0.001 very highly sig.
- P=0.05 roughly 95% confident that your are not wrong
 - This has been determined to be the acceptable level of being wrong in most Science

Regression Analysis and Measures of Association

- linear regression are two variables related according to y = a + b x
- correlation coefficient ranges from -1 completely opposite to +1 completely similar
- Simple linear regression

Regression Analysis

Data transformations

Critical Considerations in Study Design

- Observational passive monitoring over time or through space
- Experimental design manipulate one variable
 - More than one treatment
 - one treatment is control

Replication

- multiple experimental units per treatment
- controls error occurring in the experiment
- more precise measure of effect of treatments
- pseudoreplication
 - treatments are not truly replicated
 - replicates are not stat. independent

Self Check 7

• When trying to determine if two variables are correlated we could use Regression Analysis or simple linear regression.

- True

- False
- Passive monitoring over time or through space refers to which kind of experimental design
 - Observational
 - Experimental

- Data collection in the field
- Computer management
 - Electronic Data Collection & Databases
- Overview of stats
 - Descriptive
 - o Central tendencies
 - Measures of dispersion
- Graphing data
 - Visualization is key
- Interpretation of data with statistics
 - Associations & Hypothesis testing