Fisheries Management Techniques FT 211

Joel Markis
Week 3
Data \& Statistics

Fisheries Technology

Chapter 2

Data Management and Statistical Techniques

This Module will Contain

This Module will Contain ?? Main areas

- What are data and Statistics
- Sampling design
- Data collection in the field
- Computer management / Databases
- Data Visualization
- Overview of statistics
- Descriptive Statistics
- Inferential statistics

Student Learning Outcomes

Students will be able to:

- Broadly summarize what data are how statistics can be used on data
- Overview study and sample Design
- Explain and summarize field data collection techniques
- Outline computer based and database handling of fisheries data
- Summarize types of data visualization
- Demonstrate an understanding of general statistical concepts
- Define descriptive statistical techniques
- Summarize inferential statistical concepts

Fisheries Techniques Field Course

Dates

- Ketchikan - April 15-17
- Kodiak - April 22-24

Sign Up if You haven't Already!

Data and Statistics in Fisheries

- Manager's responsibility
- enumerate change
- assess management actions
- quantify human influences
- Need statistical tools for these jobs

What do we collect?

Data

What are data?

Values of quantitative or qualitative variables belonging to a set

Special Note: Data is the plural form of datum

- so one says, "The data are..."
- These Data
- not "The data is..."

The Data

Statistics

Statistics - is the study of the collection, analysis, interpretation, presentation, and organization of data.
http://www.ted.com/talks/arthur_benjamin_s_formula_for_changing_math _education

- Analyzing and Interpreting data
- Inferences from a sample to the population

Statistician

- Likes figures but lacks the social skills to be an accountant
- https://www.youtube.com/watch?v=IUK6zjtUjoo
- "There are Lies, damned lies, and statistics"
- British Prime Minister Benjamin Disraeli but Mark Twain

Audience, Scope, and Limitations

- Always see statistician before data collection
- "Will data answer my question?"

Self Check 1

- Generally speaking statistics involves Analyzing and Interpreting data
- True
- False
- Who said "There are Lies, damned lies, and statistics"
- Earnest Hemingway
- Mark Twain
- William Faulkner
- John Steinbeck
- F. Scott Fitzgerald

Collecting Data and Statistics

Populations and Samples

- Population = all the elements under investigation
- Sample = some of the elements
- Biological populations sometimes change because fish migrate

Sampling Design Considerations

- Size of the sampling area
- Sampling units in each sample
- Location of sampling units in sampling area
- Selection of the sampling unit
- Cost/time

Random sample

- Every member of the population has equal opportunity to be sampled
- With or without replacement
- Sleepy fish will be easier to catch
- Random number table

Part of a				
Table of Random Numbers				
61424	20499	86546	00517	
9022	27993	0452	66762	
5034	71146	9768	8653	
85676	10005	08216	25906	
02429	19761	15370	4382	
90519	61988	40164	1585	
20631	88967	19660	89624	
89990	78733	16447	27932	

Stratified random sample

- Divide population into Strata
- Randomly sample within strata

There are twice as many boys as girls in the population..
...so you need twice as many boys as girls in a stratified sample.

Cluster sampling

- Determine sampling sites
- Choose a site randomly
- Take all the samples from a single site

Systematic sampling

- Select sampling units at regular intervals
- Examples:
- sample every fifth 100-m section of a stream
- measure and weigh every 4th fish from a population

Sample Size

- Larger the better, money and time constraints
- Stepwise determination ($5,10,15, \ldots$) till mean and Cl are stable - Usually $n>30$

Self Check 2

- How can one generate a random number
- Use a random number generator
- Roil a die
- Flip a coin
- All of the above
- Dividing the population into strata and then randomly selecting a sample within strata is an example of
- Simple random sampling
- Stratified random sampling
- Systematic sampling
- Cluster sampling

Data Handling and Database Management

- Data are expensive to collect so
- record accurately
- keep it safe
- quickly if possible

Field data sheets are standardized by study

- Print on waterproof paper
- Write with pencil, ink will run
- Write legibly, you may not be one reading
- Copy or input data sheets asap
- Easier to resolve discrepancies when its fresh

When possible, make use of new technology

- Electronic measuring boards
- Digital calipers
- iPad and dataloggers

- Check to be sure data are being recorded

Self Check 3

- Which is best for recording written information in the field?
- Pencil
- Pen
- Sharpie
- Electronic measuring boards and digital calipers are both examples of ways to reduce writing and data errors in data collection in the field - True
- False

Data Management

- Most Organizations use databases. So...
- Biologists need to understand databases
- Also how to enter and retrieve data
- Database manager

Databases are

- Repositories of information
- Logically organized
- Facilitate retrieval of specific information
- Provide for customized output reports
- Relational

Examples of databases include

- PC
- Access
- dBase IV
- Paradox
- Double Helix
- Mainframes
- Oracle

Storage Considerations

- ALWAYS MAKE BACKUPS
- daily, weekly, monthly
- CD-ROMs may degrade after 30 years
- Technology becomes obsolete (5 1/4" floppies)
- Most organizations have network drives

- RAID Storage
- Cloud

Quality Control

- What quality control exists?
- There needs to be some!
- Number in your pants, factory line
- Are data within believable ranges?
- Sorting is Huge
- NERRS Stories
- USFS Forest Inventory
- check printouts by hand
- use two people to proofread

Self Check 3

- The paper number in the pocket of a new pair of pants is an example of what?
- Pants Database
- Sizing Information
- Quality Control
- None of the above
- Click on the icon that is NOT a type of database softyman Microsoft ${ }^{*}$ pdBase A Access Ex̌cel

Break

Data Visualization (i.e. graphs)

Visualization is so important

SORTED

ARRANGED

Data Visualization (i.e. graphs)

- Depict ALL data
- Picture worth 1000 numbers
- pie chart
- bar chart
- histogram (vertical or horizontal)
- scatter plot
- line graph

Histograms and Bar Charts

- Histogram
- Graphical representation of data
- For continuous data
- Length-frequency data
- Watch out for bin size bias
- Bar Chart
- For category data
- Spaces between

Pie Chart

- Also for category data
- Like diet components
- Size of slice equals relative contribution

Figure 3.4: Ex-Vessel Value of PWSAC Salmon by Species, 2007-2011 Total 130518000 - Pink

Scatter Plots

- Show relation between X and Y
- X (independent variable) on horizontal axis
- Y (dependent variable) on vertical axis
- Examples:
- length-weight
- spawners-recruits
- effort-yield

Line Graphs

- for ordered data
- time-series with time on X-axis

Alaska Commercial Salmon Harvests and Exvessel Values Source: ADF\&G, October 2015

2015 Alaska Commercial Salmon Harvests and Exvessel Values					
Species	Avg. Wt. (pounds)	Avg. Price per Pound	Number of Fish (thousands)	Lbs. of Fish (thousands)	Est. Value US\$ (thousands)
Southeast					
Chinook	10.06	\$3.81	307	3,085	\$11,751
Sockeye	4.36	\$1.09	1,389	6,054	\$6,598
Coho	5.88	\$0.78	1,876	11,030	\$8,604
Pink	3.84	\$0.20	34,089	130,900	\$26,180
Chum	8.46	\$0.50	8,559	72,407	\$36,204
Totals			46,218	223,473	\$89,335
Prince William Sound					
Chinook	16.42	\$5.65	24	388	\$2,189
Sockeye	5.35	\$2.01	3,210	17,183	\$34,593
Coho	7.43	\$0.66	198	1,469	\$966
Pink	3.38	\$0.22	98,254	332,085	\$71,913
Chum	5.38	\$0.61	2,544	13,679	\$8,331
Totals			104,229	364,802	\$117,990

Self Check 4

- What type of data visualization is depicted above
- Pie chart
- Bar chart
- Histogram
- Scatter plot
- Line graph

- A \qquad is for categorical data
- Bar chart
- Histogram

Data Terminology and Characteristics

- Data set $=$ entire collection of numbers
- Case = row of closely associated variables
- example: L, W, age of single fish
- Variable = column describing an attribute of
Fish Length Weight Age each case

Qualitative and Quantitative data

- Qualitative = category data
- nominal (sex, species) cannot order
- ordinal (ranked data, house number) can order
- Quantitative = numerical data
- discrete (integers example: age, count)
- continuous (not integers example: length, temp, time)
- Can assume an infinite number of values between any two

Precision, Accuracy, and Bias

- Precision = how tight is pattern on shotgun blast?
- tighter means more precision
- Accuracy = how close is pattern to center of bull's eye - closer means more accuracy
- Bias = consistent inaccuracy

High Accuracy High Precision

Low Accuracy High Precision

High Accuracy Low Precision

- Precise
- Accurate
- Biased

Significant digits

- Can't be more than the level of your measurement!
- Minimum accuracy = range $/ 30$
- Maximum accuracy = range/300

- Fish lengths 21.362-51.482 - Range $=30.120$
- Minimum-30/30=1
- So 1 cm
- Maximum-30/300 $=0.1$
- So .1 cm
3.14159562

Self Check 5

- The above represents which type of data variable
- Row
- Column

- Precision represents how close a pattern is to the center of bull's eye, closer means more precise
- True
- False

Statistics

- Falls into 2 categories
- Descriptive - Collection, organization, summarization \& Presentation of data
- Inferential - Generalizing from small to large, estimation, hypothesis testing, variable relationships, making predictions

Statistics

- Analyzing and Interpreting data
- Inferences from a sample to the population
- If samples are selected accordingly - represent population
- n = Sample Size

Statistics

1. Describe data 2. How spread out the data are

Descriptive Statistics

- We have data, now we want to describe this data
- Summarize lots of measurements with one number (or a few)
- Measures of central tendency

$$
\bar{x}=\frac{\sum x}{n}
$$

- median = middle value
- mode = value occurring the most

Descriptive Statistics (cont.)

- Measures of Dispersion
- Range = max - min value
- Variance = sum of squared deviations from sample mean
- How much the data varies
- Standard deviation (SD)
- square root of variance
- Standard error of mean (SE)
- standard deviation / root of sample size

Variance

Degrees of Freedom

- Number of independent observations in data set
- $\mathrm{n}-1$ where $\mathrm{n}=$ number of observations
- increased degrees of freedom reduces variance

Confidence Intervals

- Sample average rarely equals population mean
- Express estimate as a range of values
- Average plus/minus Student's t (n-1 df) times standard error of mean

Confidence Intervals

The 95% confidence interval for μ

Distributions

- Normal - bell shaped curve
- Skewed - data clumped to right or left
- Bimodal - two peaks in the range of data

Normal Distribution

Self Check 6

- In general descriptive statistics fall into two categories, measures of the 'Central tendency' and Measures of dispersion
- True
- False
- The above figure represents what kind of data distribution
- Normal
- Sigmodal
- Skewed
- Bimodal

Inferential Statistics and Hypothesis Testing

- What can we infer about the data
- Are two variables related?
- Are two groups of fish different?

Inferential Statistics and Hypothesis Testing

- Null hypothesis... no difference in pop means
- Two-sided alternative hypothesis... yes difference in pop means
- One-sided alternative hypothesis... pop1 > pop2 or vise versa

Basic Inferential Tests of Significance

How do you test for significance?

- t-Test - are two means different?
- paired t -Test - are means of paired data different?

- Before after
- ANOVA - are any of a group of means different from the others?

$$
\begin{gathered}
? \\
A=B=C=D
\end{gathered}
$$

- Chi-square test - does observed freq. dist. differ from expected freq. dist.? X-test

Levels of significance

- $P>0.05$
- $0.01<\mathrm{P}<0.05$
- 0.001 < $\mathrm{P}<0.01$
- 0.0001 < P < 0.001
not significant
significant
highly significant
very highly sig.
- $\mathrm{P}=0.05$ - roughly 95% confident that your are not wrong
- This has been determined to be the acceptable level of being wrong in most Science

Regression Analysis and Measures of Association

- linear regression - are two variables related according to $y=a+b x$
- correlation coefficient - ranges from 1 completely opposite to +1 completely similar
- Simple linear regression

Regression Analysis

Data transformations

- $\log 10$
- $\log \mathrm{e}$
- square
- square root
- sin
- cube

$$
\begin{aligned}
& \sin (x) \\
& x^{3}
\end{aligned}
$$

Critical Considerations in Study Design

- Observational - passive monitoring over time or through space
- Experimental design - manipulate one variable
- More than one treatment
- one treatment is control

Replication

- multiple experimental units per treatment
- controls error occurring in the experiment
- more precise measure of effect of treatments
- pseudoreplication
- treatments are not truly replicated
- replicates are not stat. independent

Self Check 7

- When trying to determine if two variables are correlated we could use Regression Analysis or simple linear regression.
- True
- False
- Passive monitoring over time or through space refers to which kind of experimental design
- Observational
- Experimental

Recap

- Data collection in the field
- Computer management
- Electronic Data Collection \& Databases
- Overview of stats
- Descriptive
- Central tendencies
- Measures of dispersion
- Graphing data
- Visualization is key
- Interpretation of data with statistics
- Associations \& Hypothesis testing

