Visual Basic Chapter 3 lecture

Speaker 2:
Welcome to chapter three for introduction to Visual Basic. Um, we're gonna continue on. In this lecture, we'll actually learn how to write some simple code for our Visual Basic programs um, to do some more stuff. We'll also talk about some data types um, some, uh, variable names and how to store data um, to be used in our program. Um, and also, some of the decision making statements to be able to to decide what we want to do with our code. And lastly, some relational operators um, so we can do some mathematics.

[00:01:00]

So again, to this point, we really haven't done code. We've done some Visual Basic program using that, the drag and drop controls. But we haven't written any code. Um, so today, we're gonna use that, our graphical user interfaces um, again to give it a distinct look and feel and actually use some code um to write programs. Um, again, you'll be able to see the menu options, file, edit view, tools, window, help, uh, some scroll bars on the side of the page to be able to manipulate and move along in that the ID environment.
Um, so in chapter two, we built a a form and we built a control and we didn't use any code in it to display it. Um, now we're gonna actually add some code into that program so that we can have it do something more than just display to the user. So, uh, the book actually uses the convention where it shows the line numbers. The line numbers aren't a part of the Visual Basic programming language but I will be able to to allow us to to reference line numbers so you can see what's going on in the code.

[00:02:00]

Um, so again, here's some backend side of the code. You can double click on the form to bring you actually into the code side to be able to view what we're going to to type in. Um, so in this app, we're actually gonna add some features. You'll see on line 8, it says label one dot text. The dot text property, again, is going to be the property that allows us to to display something in that text box. And we're gonna say, Visual Basic is fun. So that will programmatically display, Visual Basic is fun, rather than having to type it into the label at run time. Um, so at design type, rather. So, before last week, we we actually typed it in there. This week, it will actually automatically add it for us. So, again, it looks the same. Um, to the user, it's the same, but from a programmers perspective, we've programmatically added that control to that uh program.

[00:03:00]

Um, again, when we go to add comments to our field, we're gonna use the single quote character to actually allow it to uh be ignored by the compiler. There's two different ways we can do it. We can do it at the beginning of the line and we'll ignore everything that's written on that line, or you can add it after some code and everything past uh, that single quote character will be ignored. That's called end of line comments. Um, and again, that's just for ease of the programmer. Sometimes you'll want it to to have a whole line. Sometimes you'll just want it at the end of a code snippet so you'll know what's going on.
Earlier, we talked about classes. Again, classes are a way of um, breaking up things and uh grouping methods together in a program to give it some sort of organization. So the methods are all gonna be um, manipulating data that's in the same program. And that programs gonna be uh defined as a class. Um, again, our public class so that we have access to it throughout our program. Public and class are gonna be our keywords. The keywords again, are reserved by Visual Basic. Can't be used as variable names. Um, in our ID environment, they'll show up as blue uh to indicate that they are keywords and reserved.

[00:04:00]

Um, for our class names again, for our initial project, where we were just naming it, um, and gave it to us a simple app. Um, you see A as capital at the beginning um just for convention. Um, it can't start with an underscore. It can't start with a digit but it can contain them um so we have valid identifiers and invalid identifiers. The valid identifiers would be something like value one or welcome one uh and gross pay. Um, but the name 7 welcome is invalid because it starts with a digit.

[00:05:00]

By convention, every word in a class name should begin with an uppercase. That's known as Pascal case. Again, Pascal is a high level language that was developed before Visual Basic, um and some of the aspects were taken from Pascal and adopted into some other programming languages. Again, you can't use a keyword as an identifier. An identifier um is reserved by Visual Basic to do some specific function. Um, for example, if you try to use double as a class name, Visual Basics can't locate it um and is gonna cause errors and it won't let you compile your program. So, again, all of the reserved words will show up um in a different color to let you know that they are reserved words um and just be aware of that as you're programming.

[00:06:00]

It's also important to note that visual basic is not case sensitive. Uh, the keywords and identifiers aren't case sensitive. So, A Simple app with a capital A, capital S uh is the same as saying a simple app in all lowercase letters, as far as the compiler's concerned. Uh, programmatically, us looking at it, it gives us significance. We know that it would be a class name or a program name. Um, if it's begins with that capital but uh variable names would be all lowercase. So, again, uh Visual Basic, we have a preferred case that we want to use. Um, we want to look at it um in a way that we want to see it. Part of our program will have blank lines and white space. Um, the blank lines are basically ignored by the compiler but again, make it easier for us to read. Um, some of that white space in there is easier to read um, and again, ignored by the compiler.

[00:07:00]

Graphical user interfaces are event driven. Um, we talked about events and how Visual Basic is an event driven program. It's gonna respond to actions created by the user. Um, for instance, a mouse click uh, an up and down arrow. Um, when we enter a text box, or leave a text box, those will generate events and we have to write handlers to handle those events. Um, one event that happens when the form actually loads is called the load event. Um, so it's that the form underscore load, that event occurs when the program is is brought into memory by the user. Um, and sometimes we want things to happen in that load event. Um, so it's gonna make it easier for us to use.

[00:08:00]

All GUI controls and including forms, again, have events that are associated with them. We're gonna write event handlers um and writing the event handler is known as event handling. Later on, we'll learn how to make methods um and call methods. Um, we'll do that in chapter six. Um, but there's built in methods that we'll use. Again, when an event occurs, it's set to up and raised. So, the program raises the event and passes it to an event handler. Um, by default, it uses the uh default handler which basically does nothing. Um, other times if it encounters an error, it will crash the program. So it's important to know when you write events um, what they're handling and how it handles. In our program, it has my based upload. Again, that's when that the forms loaded into memory um and it inserts it automatically.

[00:09:00]

If we want it to find our own method, uh, we start with the keyword sub. That begins the method declaration. Um, at the end of it, we want to use the line end sub. Uh, the body of the method uh declaration has information in it. Uh, sub is short for subroutine um which was an early uh term for using methods. Methods are also called procedures in other languages. Um, and again, we add some comments there to help read it and know what's going on. At the end of uh end sub method, you usually want to uh put a line in so that you can have some some space. And the end sub will actually terminate the method. Visual Basic automatically indents things for us, um, making it easier to read and making it easier to process. Again, it has nothing to do with the compiler. The compiler basically ignores the indentation. Um, but it makes it easier for us to see what's going on.

[00:10:00]

So, when we want to get into the real work of the program, again, that occurs on line 8 of our example. We have the phrase, visual basic is fun. Um, that actually instructs the computer to perform an action which has actually changed the text field on the label control um to be that text string. Uh, characters that are surrounded by double quotes are called String literals or just Strings. Um, the entire thing, everything together is generally called a statement. So when the line is executed, it actually changes the text property of the label to be visual basic is fun and is updating the text on the form. So when we see it, um, it will update. Um, by assigning it, we're using the equals operator um and it actually gives it a new value into the text field. So when we use the assignment operator, we always want to read from right to left. So, what occurs, occurs on the right and then is assigned to what's presented on the left of the equal sign.

[00:11:00]

The expression label one dot text contains two identifiers. Uh, label one which is actually the control and text which is the field of that control. Um, it's separated by what's called the dot separator. The dot separator um gives it the property name. Um, and again, when we're typing this into the ID environment, it will actually show us all of the properties that we can use that are associated with that control. Um, so, as you're typing it out yourself, you'll see it populate there and you'll be able to choose which control you want. Sometimes it's helpful, sometimes it selects the wrong one as we're typing and you have to actually uh exited it out and retype it in. And again, uh, after it executes it reaches the end sub which terminates that. They're programmatic definitions. The end class line indicates the end of the class.

 [00:12:00]

So, again, there's uh two key words up at the top: public and private. Um, most of the classes that we'll define will be public. Most of the handling methods are gonna begin with the word private. Um, we'll talk about that some more um when we get to advanced Visual Basic which is chapter nine, uh, for object oriented programming and classes. Um, public methods and private methods are important when you're uh large programs and when you want people only to be able to access certain data um and not have access to other data. So again, it's kind of outside of the scope of our introductory class. Just be aware that it's there.
So again, here's the uh, step-by-step uh, how we actually improve on our a simple app that we created in the last chapter. So we open up the a simple app uh folder from our examples. Um, again, we're gonna open the SLN file. The SLN file is a bunch of different pointers to the actual program files that we created so the visual GUI app, as well as, the um, Visual Basic file, the dot vb file. So the SLN in it of itself doesn't contain any information that's relevant to us. It just basically tells the computer to open up all of the other files and group them together into the project.

[00:13:00]

So, in larger programs, we may have several forms and want to rename the forms to different things. Uh, for most of our purposes here, we're only dealing with the single form but you can still change the form name. Um, by default, it's form one dot vb. You can change it to a simple program dot vb, uh, if you go into the solutions explorer, right click and choose rename. The dialogue will appear ask you if you want to rename all the references to form one in the project. It's very important that you rename all the references. Uh, when the compiler goes to build it, it's gonna look at all of the different names and if it's sees uh, form one and form one isn't the name of the form, it will actually throw an error, so, you want to make sure that you're replacing all of the references.

[00:14:00]

If you double click on the file to open it, it brings it into design mode. Uh, you can select the form by clicking on it. The properties window in the ID changes to the form name, form name one to a simple app where you change the file name. You can also rename a file by selecting it in the solutions window and then changing the file name property in the properties window. Again, there's different ways that you can view the form's code. You can right click on the form and select view code. You can right click on a simple form in the solutions explorer and choose view code. You can select code from the view menu or you can double click on the form itself and it'll bring you actually into the code window.

[00:15:00]

Uh, the editor window contains um some pre-generated code that's built by Visual Basic for just creating the program. Uh, you can see here, we'll have the public class, a simple app and the end class, um, and you type your code actually in the center. Again, the Id is trying to help us out. So, it's gonna do some coloring, some shading to identify different elements in it. Keywords are gonna appear in dark blue. Comments are gonna be colored green. Um, and again, other program elements are gonna have some different colors. If you create an error in your program, they underline it in red um, to make it stand out. Again, this is a function of the integrated development environment, not something that's specific to any compiler. Um, so it's actually visual studio that's giving you this.

[00:16:00]

If you go to work in some other languages, other languages you can uh, actually create within a text editor that doesn't have these options. Or you can actually download an integrated development environment that will again, provide you that text highlighting to differentiate things within the program for you to kinda help you out. Um, again, we talked about some string literals. Um, you can see the example of the string literal in label one dot text of line eight of figure 32. Um, you can customize the color shown in the code editor if you go to tools and options um, and select fonts and colors to display the options uh, for the various code elements. Um, by default, I leave them how they are. It does a good job of differentiating them for you, and that way, if you happen to work on multiple computers, you don't have to change these options every time.
You can also configure the editor window um to to help with you coding experience. There's some different options that you can set. To create the event handler uh, method for uh, a simple app load, you can double click on um the program and it will actually create that event for you. That's the default event. Um, you can also click on, a simple app dot vb in the design tab uh, again, to view it there. Double clicking on any control creates it's default event handler, um, and then switches to code view. Again, for the form the default is the load event handler. Uh, and if you double click on the blue background of the form, it creates the event handler.

[00:17:00]

The ID automatically names an event handler with the name of the control. In this case, a simple form adds an underscore and then the method that it's handling which in this case is load. So again, if we were on the form view and you double click on it, it automatically brings us into our public class, a simple app, um and our private sub function, a simple app load, handling my based upload.
Line three happens to be too long to fit on a single line in the book so they split it into two lines. Um, if you want to split something into two lines, you can add the line continuation character which is just a single underscore um between events. Most of the time, you don't really need the underscore. Um, so you'll see, it continues on multiple lines when you use other operators.

[00:18:00]

Splitting a statement over several lines um without including it can cause a syntax error. Uh syntax errors a error in the programming. You'll see syntax errors a lot if you miss a parenthesis, you misspell words, or if you have too long a line of code. Uh, Visual Basic will try to correct most of the syntax errors for you automatically, again, to try to help you out as a programmer. Again, using IntelliSense in the editor window um when you click in here, it will automatically try to give you some help to enter code into it. As you start to type uh IntelliSense will list out things for you in order to to assist you in creating your programs more easily.

[00:19:00]

So, for example, when we start to type label one dot t, it'll automatically show you what options are available within that control. Uh, the property fields tab index, text, text a line are automatically there. We know that we want text so you can select text at that point. Um, again, it's predictive texting or typing so as you start to type out more characters, it will bring you to the selection that you want. Um, you can complete the name by pressing the space or the tab keys. Also, if you close out of IntelliSense by hitting the ESC key, uh, you can display it again by hitting control or the space bar key.

[00:20:00]

Once you have all your code in there, you want to compile and run your program. You can go up to debug and then start debugging or press F5. Um, and again, it should automatically run the program for you, assuming there's no syntax errors. If there are syntax errors, uh, the error handling window will come up and show you what line your errors are on. Otherwise, it will run the program and look. Um, similar to our chapter two program. If you just want to compile the program and see if there's any errors but you don't want to run the program, you can go up to build, rebuild solution. Um, that will create the exe file, um, a simple app dot exe because a simple app is the name of our program.

[00:21:00]

Again, that exe file will execute in its own environment outside of Visual Basics so note, you no longer need Visual Basic to run that application. Um, but it does run on the dot net frame work so you do have to have the dot net frame work installed on the computer that you're running that application. Doesn't automatically include all of the components that it needs. The dot exe file, again, indicates that it's an executable file um, which actually just means that it can run in a windows environment. Um, again, if you have an error in your code, it will have some squiggles. Uh, it tries to provide a description of what that error is. Um, again, that only occurs when it's a syntax error or an error in the code and it tells you what's expected. It gives you the error list. It tells you um, basically, what line it's on um and what's missing. It tries to auto-correct it for you. Um, and again, if it's correct, you can just click on it and it will automatically update that error for you. Um, sometimes you need to go back to your code and actually fix it more.

[00:22:00]

For section three three, it talks about building an addition app. Um, I provided a sample example where I actually made a calculator app and part of that that calculator app was that. So if you want to see how I did that in the Visual Basic environment, you can actually look at that example um show there um (coughs) that's located on CM connect as well. So, I'll just uh talk through this um without going into Visual studio.
So, again, the first thing that we're gonna do is create our form and then we're gonna add the code. This is what the code looks like for the addition program to add two images together. So, this is uh ultimately what we want our GUI to look like. Um, again, a form up at the top of the form has the name of that the form which we'll call Addition has uh two labels. The first label says enter first uh integer. The second label says enter second integer. We have uh, numbox, uh and another textbox. Then, we have a button that says add and then we have uh a third text box there that's set to read only. Again, we don't want the user to be able to type into that box, um, and that's going to display our result for us.

[00:23:00]

So, again, in order to create this application, we have to have two labels. We have to have three text boxes and we have to have a button. So, again, we go up into our control uh toolbox there and drag those controls on, double click, will automatically add them to the form. You can click onto the the one that you want to add and then click onto the form and it will also add it um, there, as well. So Textbox is going to be the control that we're gonna use for input. So a text box is actually an area where the user can type information into. So, a label, we actually type information into. We can set it, again, in the properties at design time or we can set it programmatically um, on the back end at run time through the load operator. Again, which way you do it is up to you. Generally, it's just as easy to set the labels properties at uh, uh, design time as long as they're not changing at any point in your program.

 [00:24:00]

A button is the other control that we're gonna add. Again, a button will respond to an event such as click or double click. Um, and that's the event that we're going to raise when the user clicks on that button. So, when the user clicks on the button, we're gonna assume that it has text in the two text boxes and then we're gonna perform the action which, in this case is going to be addition of those text boxes. So, we're gonna have some declarations, as well. Um, in this case, we're actually going to declare some variable names. Variables are gonna be locations in memory where values are gonna be stored for use by the program. So the the variables begin with the keyword dim. Dim stands for dimension. Again, it's going to just go out into make. 

[00:25:00]

memory and grab some memory uh to create a storage spot for those uh variables. The storage button memories which have a name. That name is what we're going to refer to as the variable name in memory in order to use them.
Uh, we're going to create a datatype integer. Integer are whole number values um as oppose to decimal values or um, values that have a decimal point. Um, again, this is for uh simplicity. Uh, integers are primitive datatypes. Uh, there's other datatypes that are primitive datatypes such as Boolean, uh double string, byte integer uh single care long, unsigned integer, unsigned long, short byte data, uh, date rather, decimal short and uh, unsigned short. So, a variable name can be any valid identifier. Again, it can't start with a number, it can't start with an underscore. It has to start with a

[00:26:00]

character. Um, they can uh, be declared in one statement with a comma, or you can use multiple. Uh, a comma separated list of variable names is okay. Uh, variable names should be meaningful that is self-documenting. So, uh, if you say number, um, you know that that's a number, um, as oppose to A. You could call it integer A, integer B. A, and B really have no no meaning in that program at that time. So, you really want to give it something that's gonna give it meaning for you to understand and for people who are reading your code to understand.

[00:27:00]

Uh, by convention, the first word of a variable name begins with a lower case character. Any other word that begins with it should have an upper case character. That's known as uh camel case. So you could say, first number, first is uh, f is lower case. Number is uppercase N, so first Number. Again, identifiers aren't case sensitive but using this convention helps readability and it helps uh, helps the programmer remember as they're going out and typing these names into their code.

[00:28:00]

So, variables are gonna store the values that are entered by the user. So we're gonna again, use the assignment operator, the equal sign to give the value to number one. Uh, the number one is gonna come from our first text box. So we say number one text box dot text is gonna be the value that is contained within that textbox. Then, we're gonna assign that statement using the assignment operator um, to our variable name, first number. Um, and num two is gonna come from number two dot textbox. Um, if the user doesn't enter an integer, if they enter the word, such as, hello, a run time error is gonna occur. Run time errors are different than syntax errors because they don't occur until the user actually types something into the box. Um, you can use the debugger to to see what happens. So if you go debug start debugging, uh, you can do that. You can terminate the program by going to the stop debugger or clicking the break in that.
In chapter seven, again, which is advanced Visual Basic, they show how to make programs more robust with uh handling run time errors. So again, it's outside of the scope of this class to do that. Just be aware that um, users don't always do what you tell them to do. If that happens, you'll see an unhandle the error section. Again, in this case, the program is raising the event which is an error and there's nothing to handle it. Uh, so the default uh, uh, event for an error is to actually crash the program.

[00:29:00]

So again, we're gonna use the variable in our calculation. Um, we're gonna have an assignment operator that calculates the sum of two integer values, number one, number two and assign them to the value of total. So total is gonna get the value of number one plus number two. So the expression to the right, again, is gonna be always the value weighted before the assignment operator occurs. So the addition operator is gonna be a binary operator. That is it takes two different operands. In this case, it's gonna take number one and number two. Visual basics is automatically gonna put um some spaces to make it, again, more readable. Those spaces again are ignored by the compiler at run time. Um, but the ID is trying to help you out.

[00:30:00]

When we go to display the results in our textbox, again, we want to have an expression that's uh gonna be consistent uh with the literal string and our variable. We're gonna use our literal string. The sum is uh, the and symbol which is the string concatenation operator. Concatenation means putting two strings together um and total is going to be, again, our uh variable for total, which is going to be representative of num one plus num two. Uh, the string concatenation operator again, is gonna be a binary operator that's gonna join two strings together to make a longer string. Uh, one of the operands is a number, the other is a string um and Visual Basic will automatically convert the uh number over to a string for us.

[00:31:00]

Again, we'll do that to create the uh additions program uh we can rename our form one to uh be additions. We can change the form font. Um, we can change the name of our controls so that we can use them. So an example, the first example we used label one to access the labels text property. Um, in this case, we're gonna change the the name of those properties uh to be something other than that so that we can manipulate them in our program. Uh, for the first label, we're gonna say uh, number one label, uh for our second label, we're gonna say number two label. For our textboxes, we're gonna call it number one textbox, and number two textbox. For a button, we're gonna call it add button, uh and for our label we will call it result label.

[00:32:00]

So, uh, the author chooses to use uh the full name of the control within the variable name to to keep it straight. Um, some other texts, some other ways of doing that or using that, a three character convention to name them. So, instead of labels spelled out, you can use LBL. Um, you can put it after the name of the field or before the name of the field. Again, it's up to you. As long as you follow some sort of convention in your program, and you don't leave them default. Um, for instance, uh, we don't want to see label one, label two, label three, label thirteen. Uh, textbox one, textbox thirteen. You want to give them some sort of name that's going to be mnemonic, that you're going to remember throughout your program. Um, because the more complex your program is, the more controls your programs going to have on it. And you want to be able to remember what those controls are later on so you can pro uh programmatically use them.

[00:33:00]

So, again, we can set the text property. Uh, the property, if you click on the form uh, in the properties window changes to the form. Um, and again, you can use the forms text property to change what appears in the top. Um, and again, you can do this for each control. Um, click on a label, it brings out the properties box and go to the name and you can change it. Again, to add labels to the form, you go into the toolbox, and you can double click on them. You can click and drag them. Um, as you're dragging them around your form, you'll see snap lines. Snap lines indicate uh where they go so that you can align everything in your program, similar to to something like Photoshop gives you snap lines.

[00:34:00]

(Coughs) These are just other things that we've talked about so I'm just gonna click through them. Um, again, you'll add other labels to the form. Again, you should line them up so that they look similar, um, and have a feel there. Again, you're just gonna add all these properties to the form. Again, if you want to see what it looks like more uh clearly, you can look at the example where I build uh a sample application. Once we added the the button um to do the ad, we're gonna add the click event. Again, if you double click on the button, it automatically brings you into the default event handler which is click for that button. Um, and automatically, it's gonna name it for you. Again, everything that appears to the left of the event handler um is default and you can actually change the name of it. Everything to the right which is uh event handler name, can't be changed um because that's going to to be what actually handles the event that's raised by the program.

[00:35:00]

Once we've added all our text in, you can test your program to ensure that it runs. Um, if it has any syntax errors, it's gonna give you an error on that. Um, again, the variable names are gonna reference memory locations. Every variable is gonna have a name, a type, a size, and a value. Um, there's a default value that's that Visual Basic has for each data type. Uh, the sizes determine by the type that's involved and the name is going to be what you're going to name it. Um ... If the user enters 45 into the text box, 45 is going to be uh a string that's assigned to the number one text box dot text. Then, it's going to assign it to the number one. Um, Visual Basic is going to use some inference to actually determine what's there. Um, if there had been anything that was stored in the variable number one previous to us using the assignment operator, that value is going to be replaced by the new value in it's memory. Um, so anything that was stored there originally is gonna be lost.


[00:36:00]

If they enter number 72, again, 72 is gonna be that the entered into the text field. 72 will be the text that number to text box dot text is going to represent. The assignment operator is going to assign it to number two. Again, it's gonna infer that uh, because number two is an integer, the value of that was entered into number two textbox dot text, um, is a number. And then it's going to place that value in it's memory location. Once it has those two values, number one and number two, it's gonna add those two values and then again, assign it to the uh memory location named total. In this case, 117.

[00:37:00]

So, we talked about addition, but there's other arithmetic operators that Visual Basic uses. Um, for multiplication, again, we need that the star character. There's also the mod operator. Um, mod actually represents modulus or modulo operator. Most arithmetic operators are binary, um, because it operates on two operands, um a left and a right operand. There are unary operators um that take only one operand. Um, for example, uh, plus and minus. Um and basically that makes it either positive or negative. So we have our uh arithmetic operators here, addition, subtraction, multiplication. There's floating point division and integer division. Um, those are different. There's modulus, exponentiation, uh, unary, minus unary plus. So addition, we could say F plus 7. Uh, we could say P minus C. We could say B times M. We could say X divided by Y. We could say V integer division U uh, R modulus S, Q raised to the P, uh negative E or positive G.

[00:38:00]

Again, there's two types of division operators. There's the floating point division operator and the integer division operator. And they are two different operations. Floating point division gives you the remainder. Integer division only gives you the number of times that was divided by evenly. Um, so when we do something like 7 um floating point division uh, 7 floating point division or we're gonna have 1 and it's remainder. When we do 7 integer division for, it's only gonna have a value of one. Everything else is basically thrown away. Um, same for the expressions. 17 divided by 5 um, 17 integer division, 5 is going to be 3, um where 17 floating point division 5 is gonna be 3 plus it's remainder.

 [00:39:00]

So, when floating point numbers occur, um, 2.3456 or negative 8.54 um, when they're used with the integer division operator, um, they're gonna round to the nearest whole number, then be divided. Um, that's to say 7.1 uh divided 4 equals 1. 7.7 divided by 4 is gonna be equal to 2. Because 7.7s going to be rounded up to 8 before the division occurs, so you have to be careful when you're using integer division um, that it's actually going to do what you want it to do. Um, to divide floating point numbers without rounding up uh, without rounding operands um, which is normally what you want to do, you want to use the floating point division operator.

[00:40:00]

Um, using the integer division operator, when the floating point division operator is expected, um, can lead to incorrect results. This is called the logical error or semantic error rather than a syntax error. So, the visual basic compiler will allow uh, alert you when there's a syntax error that is a code error but it won't alert you when there's uh a uh semantic or um a logic error. That is, if you make this sort of error, nothing is going to alert you. You'll just get an incorrect result on the other end.

[00:41:00]

Um, non-integer division can be done um using decimal values or the double value. Um, and you have to avoid divide by zero um because that will terminate the add. We also said there was a mod operator or a modulus operator. A modulus operator is going to only give you the remainder one. The two numbers are divided. Um, for instances, when we say 7 divided by 4, 7 divided by 4 gives you 1 and a remainder. Um, 7 modulus 4 is going to give you the remainder which is 3. When we say 17 modulus 5, 17 divided by 5 is going to be 3 with a remainder of 2. So when we say 17 modulus 5, it's going to give us the remainder, which is 2. Um, so, uh, modulus just gives you the remainder.
When you add 1 to 59, you expect the result to be 60. Um, but in an app that keeps time, when you say 1 to 59, it's gonna reset to zero. That's where the modulus operator can be helpful. Um, if you say modulus 59, it's only gonna give you the remainder to 59, you'll have values 1 to 59. You won't have any values that are higher than 59. Um, it also helps with random numbers. Arithmetic uh expressions must be entered in a straight line form. Um, let's just say A divided by B has to be written by A divided by B so that all constant variables and operators appear in a straight line. Um, you can't use algebraic notation because the compiler won't recognize it.

[00:42:00]

Uh, you can use parenthesis to help uh, do your code parenthesis have a higher order of precedence. We'll talk about precedence in a minute here. Um, so if you're gonna say uh, B plus C, you can say, uh, A times B plus C. So again, uh, there's rules for the precedence uh and the rules for operator precedence are similar to those in mathematics or algebra. So um, PEMDAS are please excuse my dear aunt sally uh, parenthesis, exponents, multiplication, division, addition, subtraction um, are very important. Um, because operators are going to do the same thing in Visual Basic. So again, parenthesis have the highest order. 

[00:43:00]

It's going to do parenthesis first. Then, it's gonna do exponentiation. Um, any exponentiation uh will be done. Then, uh, unary operators uh plus and minus. Then, multiplication and division. Um, again, evaluated from left to right so if it occurs ... A multiplication occurs before division and we'll do the multiplication first. Integer division is going to be evaluated fourth. Then, modulus. Uh, and then, lastly, addition and subtraction.
Um, and this is again called, operator precedence um, and they're contained within parenthesis will help evaluate uh, expressions. For example, if you have uh a complex expression, A times B plus C plus C times D plus E, if you put parenthesis around B plus C, and D plus E, those will be evaluated first. So we'll do B plus C first. Then, A times B plus C, and then D plus E will be evaluated and then, C times D plus E. And then, lastly it will do the the A times B plus C plus C plus D times uh, D plus E.

[00:44:00]

Uh, for example, if you look at this example, Y equals 2 times 5 raised to the 2 plus 3 uh, times 5 plus 7. It'll do 5 uh to the 2 first because exponentiation takes the highest order of precedence. Evaluate that to 25, replace it with 25. Um, then, it will do the left most multiplication which is 2 times 25 which equals 50. Then it will do the the right plus uh multiplication which is 3 times 5 which will evaluate to 15. Um, and then it will do the left most addition which is 15 plus 16 ... Or sorry, 50 plus 15 which is 65 and then finally, plus 7 which is 72. Uh, you can add unnecessary parenthesis if it makes it uh clearer to read. They're called redundant parenthesis and basically they'll they'll be [inaudible 00:45:05]. But they're okay to have um, and can actually help you in avoiding bugs.

[00:45:00]
[bookmark: _GoBack]
In section 3.7, um, we actually come to decision making. If we want to do something um, if our particular event occurs, we can use an if then uh if then statement to do so. So an if then statement is gonna evaluate what's called a condition, if the condition is met, then, something will occur. If the condition is not met, then that condition won’t occur.

[00:46:00]

Conditions of if then can be formed using uh a quality operator or volitional operators, um, also called comparison operators. Um, the relational and equality operators have the same level of precedence and associate again from left to right. So we have equality operators, equals or not equals, um, not equals is gonna be um the less than and the greater than symbol put together. Um, so we could say X equals Y or X not equal Y. We can also use our relational operators greater than less than greater than or equal to or less than or equal to. Um, in a case of visual basic again, we're gonna use greater than and then the equal sign or less than and then equal sign.

[00:47:00]

We can compare integers, um with the equality and relational operators um and then make some decisions. So we could say, if num 1 equals num 2, um number 1 and number 2 are exactly equal, uh result box dot a pen, number 1 equals number 2. We could say if number 1 is not equal to number 2, then we could say result box dot a [pentax 00:46:59] num 1 is not equal to num 2. If num 1 is less than num 2 uh we can append that. If num 1 is greater than num 2, we can append that. Uh, less than or equal to or greater than or equal to. We can also clear it um, the textbox here if the text is changed. So again, we have our first number, we have our last number um and we can do the comparisons between them. So again, we can get values entered by the user with the click uh declaration. Again um, and then use it the and if then statements to evaluate them and determine what's displayed in the box.

[00:48:00]

So in this program, we displayed uh several different lines of code in a text box um to enable that you actually have to set the textbox multi line property to true in the properties window. Um, you can also use the textbox append text method uh to allow it to enter more text in there. Uh, again, the compiler by default will indent if then statements for us automatically, um, to emphasis what's being highlighted. We can use the text change event again to to raise the event if a textbox is changed so we don't want it to display incorrect values in our results box so we programmatically in this box, if a textbox was changed, we automatically clear that textbox out to help display that information. Um, again, we're gonna built the GUI similar to the other GUIs
that we've built within this chapter. Um, and if you want to walk through that, I suggest that you do that so that you can see that. Um, again, always when you've created any program, you want to test the program and for sure it behaves the way that you want. Uh, again, be aware of the level-


This workforce product was funded by a grant awarded by the U.S. Department of Labor’s Employment and Training Administration. The product was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites, and including, but not limited to accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability or ownership.
[image: Creative Commons License]

Except where otherwise noted, this work by Central Maine Community College is licensed under the Creative Commons Attribution 4.0 International License.



image1.png




